Resolution Independent Grid-based

Path Planning

Gita IKrishnaswamy and Anthony Stentz

CMU-RI-TR-95-08

Carnegie Mellon University
i ~The Robotics Institute
THE

Technical Report

DISTRIBUTION STATENLNT & [
—_—— T s

Approved ior public releqse; }

Distribution Unlimited {

ROBOTICS
INSTITUTE

]
|
!
|
!

DISCLAIMER NOTICE

i

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Resolution Independent Grid-based
Path Planning

Gita Krishnaswamy and Anthony Stentz
CMU-RI-TR-95-08

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
April 1995

© Carnegie Mellon University

DISTRIBUTION STATEMENT X

Approved for public release;
Distribution Unlimited

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

P rting burden for this collection of Nformation 15 esumated to average 1 Rour per resporse.
g:?‘h:r:mnli :gnamummq the data needed, and compieting and review:ng the coliection of information Send comments 1. X
collection of information, including suggestions tor reducing this burden. to Washington Headauarters Services, Directorate for 'nformation Operations ana Reports, 1215 jetferson
Davis Highway. Suite 1204, Arlington. VA 222024302, and 10 the Otfice of Management and Budget. Paperworx Reduction Project (0704-0188), washington, DC 20503.

INCIUdIngG the time fOf reviewing instructions, searching exrsting gata sources,
arging this burden estimate or any other aspect of this

~ AGENCY USE ONLY (Leave blank) {2. REPORT DATE
! April 1995

technical

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE
Resolution Independent Grid-based Path Planning

6. AUTHOR(S)
Gita Krishnaswamy and Anthony Stentz

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU-RI-TR-95-08

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

e A o e 2 2o R e e B AR

11. SUPPLEMENTARY NOTES

. e —

12a. OISTRIBUTION : AVAILABILITY STATEMENT

Approved for public release;
Distribution unlimited

| 12b. DISTRIBUTION CODE ‘

13. ABSTRACT :Maximum 200 woras)

Energy conservation in a rover is an important factor which should be considered for a mission of long duration.
Locomotion is one of the primary consumers of energy. The energy used depends on the terrain and the path taken by

the robot. This paper develops a planning strategy based on cell decomposition and A* algorithm which would

minimize power usage due to locomotion. Cell decomposition is used because of its ability to represent the !
environment as a grid of continuous values. The current limitation with cell decomposition is that the path produced is
resolution-optimal only. The method developed in this paper overcomes this problem and produces

resolution-independent optimal solutions for a binary (obstacle/free space) environment and better results for the

continuously varying environment than common existing techniques. This is done in a computationally efficient

manner.

14. SUBJECT TERMS

15. NUMBER OF PAGES

26 pp
16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CL?SSZFICATION 20. LIMITATION OF ABSTRACT}
AGE OF ABSTRAC, ;
OF REPORY 1 limited OF THIS fm?imited unlimited unlimited i

VAN 7EEmAC-An-REen e T L G sie & Tearparc corm 98 Fsy 3%

oY

DTIC QUALLS:

eV

Contents

1 Introduction 1
2 Problem Statement 1
3 Prior Work 4
4 Methods 5
4.1 Terrain definition e e e e 5
4.2 Path Planning definitions o L. 6
4.3 The A* algorithm 7
4.4 Method 1: A* with increased look-ahead 7
4.5 Method 2: A* with connect-back 11
5 Results 17

6 Conclusions 21

List of Figures

O© o0 N O Ot A W N

e T e o e
(o B N VM S

Paths determined by existing techniques
Randomly generated fractal terrain
Connectivity diagram for various levels (Method 1)
A* with refinement by connecting back
Path found by new technique of connecting back
A* with improved connecting back technique which is optimal (Method 2)

Paths for continuously varying terrain.
Computational time for continuous terrain
Computational time for binary terrain
Computational time with and without dominance criterion
Cost accuracy for continuous terrain
Cost accuracy for binary terrain oL
Efficiency frontier L
Performance of Method 1 for binary case with obstacle
Performance of Method 1 for uniform cost field

Performance of Method 1 and Method 2 for binary case

12
13
14

Abstract

Energy conservation in a rover is an important factor which should be considered for a mis-
sion of long duration. Locomotion is one of the primary consumers of energy. The energy
used depends on the terrain and the path taken by the robot. This paper develops a plan-
ning strategy based on cell decomposition and A* algorithm which would minimize power
usage due to locomotion. Cell decomposition is used because of its ability to represent the
environment as a grid of continuous values. The current limitation with cell decomposi-
tion is that the path produced is resolution-optimal only. The method developed in this
paper overcomes this problem and produces resolution-independent optimal solutions for
a binary (obstacle/free space) environment and better results for the continuously varying
environment than common existing techniques. This is done in a computationally efficient

manner.

1 Introduction

Autonomous mobile robots are useful for a number of applications ranging from factory
automation to planetary exploration. This work is specifically related to the lunar rover
initiative which is to robotically roam the moon for hundreds of kilometers, fulfilling the
dual agendas of entertainment and scientific exploration.

An autonomous robot fails if it enters a situation from which it cannot recover. This
factor and the long duration of the mission requires the robot to be highly reliable in its
entire system, from mechanical configuration to the planning strategy. One of the most
important factors constraining the capability of a robot is power, which is required for
locomotion, communication, sensing and computing. Therefore, the conservation of power
is very important and the planning strategy used for the lunar rover should be optimal in
energy consumption.

Since energy consumption during locomotion is a large part of the total power require-
ment, determining a path that minimizes energy during traversal becomes an important
task that the robot must perform. It is also necessary for the robot to compute this path

quickly in real time.

2 Problem Statement

The problem of finding optimal paths for autonomous mobile robot through environments
with obstacles has attracted much research interest. Path planning is usually based on
a few general approaches that can be broadly classified into two groups - network/graph
models and grid-based models.

Network/graph models are dependent on the nature and clutter of the environment.
These models represent the environment as a network of free-space regions or as a graph of
obstacle vertices. An example of this approach is the roadmap or visibility graph method.
The roadmap or visibility graph approach consists of capturing the connectivity of the

robot’s free space in a network and then searching for the shortest path in this network

that connects the start and goal points. This is illustrated in Fig.1a where the true optimal
path is found. The disadvantages of this method are that only a binary representation of
the world (obstacle/free space) is possible and the order of complexity is a function of the
number of obstacles. Also, accurate sensor information is needed in order to represent the
free space region.

Grid-based models, such as the cell decomposition approach, impose structure on the
environment without regard to the nature or clutter of the environment. The cell decom-
position approach consists of decomposing the world into simple regions called cells. A
connectivity tree is then constructed representing the adjacency relation between the cells
and searched for the shortest path or sequence of cells that connects the start and goal
points. Fig.1b illustrates this technique for a binary representation where the path is de-
termined by making transitions to the 8 adjacent cells. The disadvantage with this method
is that the path found is resolution-optimal only, i.e., the best path is constrained to follow
the 8-connected cell transitions, and therefore is not truly optimal. In many cases, as the
cells decrease in size and connectivity of the cells is increased, the true optimal path is
approached. However the complexity of the problem (which is a function of the number
of cells) increases rapidly and determining the path becomes very time consuming. Fig.lc
shows that when the resolution is doubled, the path determined is closer to the true op-
timal but the search space also doubles. The advantage of this method over the visibility
graph method is that the world can be represented in a continuous manner and for the
binary case, the number of obstacles present is irrelevant.

Another grid-based model is the potential field approach which consists of representing
the space as “attractive potential” (like the goal point) and “repulsive potential” (such
as obstacles) and moving the robot by computing the gradient of the potential in its
neighborhood. Its disadvantage is that it can get trapped in a local minima.

The lunar surface is a natural, rough terrain. Therefore binary representation (obstacle/
nonobstacle) of the terrain is insufficient and continuous cost values are needed to represent
it. Given the major planning paradigms discussed above, for this problem, only cell decom-

position makes sense for continuous cost values. The problem with the cell decomposition

2

approach, however is that they are resolution-optimal only as illustrated above. Ways to
get around the resolution-optimal problem in the cell decomposition approach and get a

truly optimal solution are being explored.

/b7 optimal pyth

(b)

[xOAL

I optim3l path

/3
START

©

Figure 1: (a) Path determined by visibility graph method, (b) Path determined by cell decomposition

with 8-connectivity, (c) Path determined by cell decomposition with increased resolution

3 Prior Work

Various aspects of path planning for a mobile robot like representation of the environment,
search techniques and complexity of search have been addressed in the literature.

Lozano-Perez [Lozano-Perez 1983] presented an approach in “spatial planning” based
on characterizing the robot as a single point in configuration space, characterizing the
regions forbidden to the robot as configuration space obstacles and then determining the
exact path.

Khatib [Khatib 1986] pioneered the potential field approach. Barraquand and Latombe
[Barraquand and Latombe 1991] combined this approach with other random techniques to
escape from local minima. This was achieved by tracking the valleys of the potential
function and using numerical tracking techniques to find the global minimum.

Taylor [Taylor 1976] investigated the problem of motion planning in the presence of
uncertainty in which he used numerical uncertainty propagation techniques. This method
was improved by using symbolic propagation techniques [Brooks 1982] instead of numer-
ical ones. Dufay and Latombe [Dufay and Latombe 1984] solved this problem based on
inductive learning.

Some search strategies were explored by Jarvis [Jarvis 1985] and Nilsson [Nilsson 1980].
Jarvis used distance transforms to generate path planning solutions, which used the concept
of finding the shortest path via the steepest descent. Nilsson used heuristics to Prune the
search tree and therefore reduce the search space.

Most of the work in the literature assumes that the environment is completely known.
Chatila [Chatila 1982], Zelinsky [Zelinsky 1992] and Stentz [Stentz 1994] have explored
the problem of motion planning in partially known or unknown environments. Chatila
based his planner on an exact decomposition of the empty subset of the workspace into
convex cells and updating the decomposition to account for new information. Zelinsky
used quadtree to model the environment (as free and obstacle space) and used distance
transform to generate the path. Unknown regions were initially treated as free space and

the path was refined as the robot acquired more knowledge about the environment. The use

of quadtree reduced the number of states to search and hence increased efficiency. Stentz
used cell decomposition to represent a continuously varying environment and introduced
a new algorithm D* (based on A*) to search the space and plan paths for the changing
environment in an efficient, optimal and complete manner.

This work attempts to determine an algorithm that overcomes the limitation of the cell

decomposition technique for a deterministic environment.

4 Methods

4.1 Terrain definition

The objective of the path planner is to move the robot, which is treated as a point, from
some location to a goal location using a terrain model, such that the cost of traversal is
minimized. In this case, the cost of traversal reflects the energy required that is strictly

dependent on the terrain.

Cost

Figure 2: Randomly generated fractal terrain

The lunar terrain surface is mainly defined by meteor strikes. Due to the stochastic
nature of meteor strikes, insurmountable obstacles are more random than on earth. In this
project, fractal terrain generated based on a random number generator is used, which is a
reasonable simulation of the moon surface. An example of such a surface is shown in Fig.2
where the z-axis reflects the cost of the terrain.

In order to perform path planning, the robot’s environment or terrain model is parti-
tioned into cells of a convenient size, with each cell having a numerical cost value (ranging
from 10-255) calculated based on the terrain characteristics such as obstructions, slope
and altitude. For example, steep upward slopes will require a lot of energy and such cells
have high cost; craters are obstructions and are high cost. On the other hand, benign
terrain and downward slopes are of low cost. Other indirect factors such as areas or cells
where the antenna cannot point directly to earth and therefore requires more energy for

communication are however not considered.

4.2 Path Planning definitions

The underlying algorithm used to search the decomposed space is the A*, which guarantees
resolution-optimal path. The purpose of the methods to be explored is to find a way to
obtain a truly optimal solution using cell decomposition and A*-based search techniques,
that gives a reasonably smooth path independent of the resolution.

The problem space is formulated as a set of states denoting robot locations connected
by directional arcs, each of which has the associated cost (which is the sum of distance
traveled in a cell x cost of cell). The arc connects from the center of one cell to the center
of another. The robot is considered to be a point. The robot starts at the START state
and moves across arcs to other states until it reaches the GOAL state. This is done using

an A*-based algorithm.

4.3 The A* algorithm

A* is a best-first search algorithm which uses heuristics to reduce the complexity of the
search. The algorithm makes use of a heuristic evaluation function, h(X) which is an
estimated cost of reaching the GOAL from state X. In addition, g(X) is the actual cost
incurred in going from the START state to state X. The merit of the state or node is the
total cost f(X) = h(X) + g(X). A* maintains an OPEN list of unexpanded nodes, sorted by
cost, which is used to pick the next state to move to and to propagate information about
changes to the arc cost function. Every state X also has an associated tag t(X), where t(X)
= NEW if the node has not been on the open list, t(X) = OPEN if it is on the open list,
and t(X) = CLOSED if it is no longer on the open list. Every state X except the START
state has a backpointer to its previous or parent state, denoted by b(X) which represents
the path.

The heuristic function h(X) must be able to provide a reasonable estimate of the merit
of a node and should be inexpensive to compute. Here, h(X), the estimated cost is the Eu-
clidean distance between X and the GOAL multiplied by the lowest cost in the grid. This
ensures that it is a strict lower bound, ie., the cost is not overestimated and hence guaran-
tees an optimal solution. A good lower bound greatly reduces the complexity because the

search tree is pruned significantly.

4.4 Method 1: A* with increased look-ahead

A path determined using A* with 8-connectivity is limited to travel only in the horizontal,
vertical or diagonal directions. As a result, at times there is a significant deviation between
this path and the true optimal path as shown in Fig.1b. Increasing the look-ahead or
search to more levels increases the choice of directions of travel (Fig.3) and hence a more

straightforward (or lower cost) path could be found.

\ /
=~ L7
Vd S
/ \
®
N 1/
~ N / P
~J{ _=J Cr L=
e 7/ / \ N T~
/] 4 \\ N
/| AN
(©

Figure 3: (a) Levell (8-connectivity), (b) Level2 (16-connectivity) (c) Level3 (32-connectivity)

The A* algorithm with multi-levels is as follows:
X = MIN-STATE()
If X = NULL, Return(-1)
t(X) = CLOSED
If X = GOAL, STOP
DELETE-OPEN(X)
For each child Y (levels 1..N) of X
If t(Y) = NEW
b(Y) =X
f(Y) = g(X) + ¢(X,Y) +h(Y)
INSERT-OPEN(Y)

If ((t(Y) = OPEN) and (¢(X,Y) < ¢(b(Y),Y)))

b(Y)= X
f(Y)= g(X) + ¢(X,Y) + h(Y)
SORT-OPEN()

If ((t(Y) = CLOSED) and (¢(X,Y) < ¢(b(Y),Y)))

b(Y)= X
£(Y) = g(X) + ¢(X,Y) + h(Y)
UPDATE-COST(Y)

CONTINUE

e MIN-STATE returns the state with minimum f(X).
e DELETE-OPEN(X) deletes the state X from the open list.
e t(X) gives the status of the state X- OPEN, CLOSED or NEW.

e b(X) is the state that X backpoints to.

e ¢(X,Y) is the actual cost to move from X to Y.

e g(X) is the actual cost to move from START to X and is ¢(Z,X)+g(Z) where Z is the

parent of X.

o INSERT-OPEN(X) inserts the state X into the open list.

9

e SORT-OPEN sorts the open list such that the state with minimum fis on top.

e UPDATE-COST(X) updates the cost of all the branches originating from state X.

Optimality
The algorithm produces the optimal path for the condition that the transitions and direc-
tions of paths allowed are dictated by the resolution and the number of look-ahead levels

N, and that the arcs are connected from center of one cell to center of the next. The path

is however not truly optimal.

Computational time & Memory requirements
The number of children for a state X is 4 * 2V, where N is the number of levels used.
With more levels, each state generates more children covering a wider space. Hence the
computational time increases because a cell is visited many more times and time is spent
in calculating different traversal costs at each visit.

The memory required does not change significantly with increasing levels because it
depends on the total number of cells and as long as that remains constant, increasing the

number of levels should not increase memory required.

Dominance Criterion
Calculating the cost of traversal from a node to its child ¢(X,Y), where Y is the child of
X, took a large part of computer time, especially at higher levels. Hence a dynamic pro-
gramming dominance criterion was used to improve the speed of the algorithm as follows:
If node X has a child Y and t(Y) != NEW (i.e., the parent of Y is b(Y)), in order to decide
if node X should be the parent instead of b(Y),

Compute ¢(X,Y) only if
(g(X) + lower bound estimate of cost to move from X to Y) < g(Y).

10

g(b(Y))
b(Y)

Y
c(X,Y)

X
g(X)

In other words, if the cost to reach X is greater than the cost to reach Y through it’s

original parent b(Y), it is ensured that the path through X will be more costly.

4.5 Method 2: A* with connect-back

It was noted that with Method 1, the euclidean distance between two points in a uniform
cost field could not always be determined unless a large number of levels were used, which
was computationally inefficient.

Due to limitations of the previous look-ahead technique in terms of computational time,
another method was devised. This technique would essentially search using A* with 4 or
8-connectivity and shorten the path if possible up to that point as the search proceeded.
This is done by redefining the backpointer of a state to its parent’s parent and so on as
long as there is an improvement in the cost and then propagating this improvement. Fig.4a
shows the path found purely by A* with 4-connectivity (horizontal/vertical moves) for a
uniform cost field. Fig.4b illustrates how the basic path found by A* with 4-connectivity
is shortened by the method described above. In the first figure, the path up to the point
A (dashed path) is shortened in two steps to the straight line SA by connecting directly
to A’s parent’s parent and so on. In the second figure, the path up to the point B (dashed
path) is shortened to the straight line SB and finally, in the third figure, the straight line
from S to G is obtained. To obtain a similar path with Method 1, a Level 4 search would
have to be conducted, which means nearly 60 children have to be explored at each state.

This would take significantly longer.

11

(@)

o p
B \)FB
e G o (5 \G

(b)

Figure 4: (a) Path found by A* with 4-connectivity (b) Path found by A* with refinement

‘The shortcoming with this technique however is that it does not always produce the
optimal path. Trying to reduce the path at every stage results in elimination of certain

nodes, and hence leads to a sub-optimal solution. This is illustrated in Fig.5 where the

path found by this connect-back technique performs worse than a Level 1 search.

12

free space
S N =1 (cost £ 2)
‘ Cost
VST A* (level 1) 11.6585
<]
\ —— A* (connect 12.1980
\ back)
\ obstacle
\ / (cost=6)

\\\ \
IN

G

Figure 5: Paths found using Levell search of Method 1 and the new technique of connecting back

The method was modified by adjusting the path only after a sequence of cells was

found, rather than at every stage. The point where the adjustment is done is when the

 path snags a corner. The path is then shortened if possible from this corner node which

is introduced, by redefining the backpointer of this node to its parent’s parent and so on
as long as there is improvement in the cost. This is shown in Fig.6b. This results in an
optimal polyline up to that point. Note that the corner nodes are not involved during
the search but only when the path-optimization is performed. This process is carried out
until the GOAL is reached, at which point a final adjustment is made. In the first figure
of Fig.6b, the corner node A is introduced when the path passes through the corner, at
which point the path is shortened in two stages to the straight line SA as before. In the
second figure, when the goal point G is reached, the path is reduced initially to S-A-G and
further to SG as in the third figure.

13

(@)

75}
_N
19,]
L =

A'-/-ﬂ)
w2
_—
/

>l
4
/

(®)

Figure 6: (a) Path found by A* with 8-connectivity (Levell) (b) Path found by A* with improved

refinement, which is optimal

14

The algorithm is as follows:
X = MIN-STATE()
If X = NULL, Return (-1)
t(X) = CLOSED
If X = GOAL
while ¢(b(b(X)),X) < ¢(b(X),X)
b(X) = b(b(X))
£(X) = g(b(b(X)) + ¢(b(b(X)),X)
STOP
DELETE-OPEN(X)
If b(X) is diagonal to X
Z = CORNER-INSERT(X,b(X))
b(Z) = b(X)
b(X) =7
while ¢(b(b(Z)),Z)< ¢(b(Z),Z)
b(2) = b(b(2))
f(Z) = g(b(b(Z)) + ¢(b(b(Z)),Z) + h(Z)
For each child Y of X
If t(Y) = NEW
b(Y) =X
f(Y) = g(X) + ¢(X,Y) + h(Y)
INSERT-OPEN(Y)
If ((t(Y) = OPEN) and (c¢(X,Y) < ¢(b(Y),Y)))
b(Y)= X
f(Y)= g(X) + ¢(X,Y) + h(Y)
SORT-OPEN()
If ((t(Y) = CLOSED) and (¢(X,Y) < ¢(b(Y),Y)))
b(Y)= X
f(Y) = g(X) + ¢(X,Y) + h(Y)

15

o

UPDATE-COST(Y)

CONTINUE
e CORNER-INSERT(X,Y) creates a corner node, where X is the parent of Y and are

diagonal to each other.

The dominance criterion used in Method 1 is employed here too.

Optimality

This method yields a truly optimal solution (which has been empirically proven) for a
binary representation of the environment. Given a sequence of cells, the shortest path
through them is a piecewise-linear curve, such that the vertices of the curve, i.e., the
starting and ending points snag the convex corners of the sequence. This is similar to
the visibility-graph approach in determining a path given a field of polygonal obstacles
[Latombe 1991]. Hence the use of corners as a breakpoint to perform optimization of the
path up to that point is intuitive because the path changes direction at it cuts through a
corner. The uniform cost space, the euclidean geometry and use of A* to search sequences
of cells ensures optimality of each polyline, and the sum of polylines gives the optimal
path.

For the case of continuously varying cost field, true optimality of the path is not guar-
enteed. It however gives the best path solution compared with various levels in Method 1.
In the continuous case, euclidean geometry cannot be used due to varying costs. Hence in
cases where there is a large disparity in costs locally, the euclidean distance from center to
center generally has a higher cost than the path found using A* and hence this leads to
suboptimal solutions. The optimal path is possible if it is not restricted to go just through
corners and centers of the cell only. This restriction is however needed in order to keep the
search space from exploding. In cases where there is a small disparity in costs locally, the
optimal polyline is usually determined. As a result paths passing through only centers and
corners of cells need not necessarily give the optimal path. Fig.7 shows the paths obtained
by Methods 1 and 2. Although the cost of the path obtained by Method 2 is lower, it is

not necessarily optimal.

16

vel) 8t.619
e} 8§

£40

12-17 EE&
9.11 EER
28 [

Figure 7: Paths for continuously varying terrain

5 Results

In order to evaluate the two methods, test cases were designed for two types of terrain -
binary and continuously varying terrain. 200 cases were run, 100 of grid size 100x100 and
the remaining of size 200x200. The total number of obstacles varied from 30% to about

75%. The cost of the path and computing time were recorded.

Computational time-Continuous case

Fig.8 shows the plot of Method 1 (levels 1-4) and Method 2 vs average computational
time. It is seen that there is almost a linear increase in time as the number of levels in
Method 1 increases. A typical case of 100x100 grid of continuously varying terrain with
many obstacles takes 1 second for a Level 1 search. A Level 4 search takes nearly 4 times
as much. It is also noted that the computational time for Method 2 is reasonable, taking
as much time as a Level 2 search, i.e., it takes roughly 1.7 seconds on average for a 100x100

grid.

17

4 T T T T T
Level-4

w
@
T

!

w
T
1

Level-3

n
5]
T

L

Method-2

Level-2

Normalized computational time
-
0 N
T T
L L

Level-1

-
T
1

o
[
T

s

NS
[5,]
[+>]

3
Method

Figure 8: Computational time for Method 1 (up to 4 levels) and Method 2- Continuous case

Computational time-binary case

Fig.9 shows the plot of Method 1 (levels 1-4) and Method 2 vs average computational time
for the binary case. Again, there is almost a linear increase in time as the number of levels
in Method 1 increases. A typical case of 100x100 grid of binary terrain takes 0.54 seconds

for a Level 1 search. A Level 4 search takes nearly 4 times as much. Method 2 takes

roughly 1 second on average for a 100x100 grid.

4 T T T T T
Level-4
3.5p E
3r 4
[o)
£
= Level-3
g 25 .
g
3
o
£ 2F E
[+]
o
° Method-2
N 5
S 1.5F Level-2 -
E
2 Level-1
1 4
0.5+ -
0 L 1 1 1 1
0 1 2 3 4 5 6
Method

Figure 9: Computational time for Method 1 (up to 4 levels) and Method 2-Binary case

18

Computational time-Dominance criterion

The advantage of the dominance criterion is illustrated in Fig.10, which shows the difference
in times with and without the dominance criterion of the two methods. It is seen that the
time saved using this criterion increases significantly as the number of levels used increases.

This is because using this criterion reduces the cost computation when a cell is revisited.

T T T T T
W{th domlnapce cmer!on' Level-4
Without dominance criterion

B
T

AN

1=l ZR78
% 1 é 3 (/ 5 é 7 é °

Figure 10: Computational times for Method 1 (up to 4 levels) with and without Dominance Criterion

Accuracy-Continuous case _

Fig.11 shows the plot of Method 1 (levels 1-4) and Method 2 vs average normalized cost
(it was normalized to lie between 0 and 1, with 0 being the lowest cos’g and 1 being the
highest). It is seen that there is significant (about 40%) cost savings from Level 1 to Level
2 and from Level 2 to Level 3. The difference between levels 3 and 4 however is quite
insignificant. Hence the extra effort in terms of computational time is not worth it in
the latter case. The cost savings between Method 1 and Method 2 is also shown. Since
timewise, Method 2 is comparable to a Level 2 search, the cost savings is nearly 70% of

Method 1. Method 2 always performs better.

19

Level-1

o
oo}
T
1

Level-2

Normalized cost
j=]
N
T
1

Level-3

Level-4

o
~
T
1

Method-2
0 1 2 3 4 5 6
Method

Figure 11: Cost Accuracy for Method 1 (up to 4 levels) and Method 2 - Continuous case

Accuracy-Binary case

Fig.12 shows the plot of Method 1 (levels 1-4) and Method 2 vs average normalized cost for
binary case. The cost savings from Level 1 to Level 2 is very significant (nearly 70%) and
is much more than for the continuous case. The cost savings between Level 4 and Method
2 is not as significant as for the continuous case. This is due to the relatively flat nature of
the terrain. Since timewise, Method 2 is comparable to a Level 2 search, the cost savings

is nearly 20% of Method 1. As mentioned earlier, Method 2 gives optimal solutions.

20

12 T T T T v
Level-1
1t .
081 1
@
8
T
[
NosF E
[
S
o
z
041 Level-2 b
0.2r Level-3
Level-4
I l Method-2
0 L L ' L
o 1 2 3 4 5 6
Method

Figure 12: Cost Accuracy for Method 1 (up to 4 levels) and Method 2 - Binary case

Efficiency

Fig.13 shows a plot of the efficiency. It is seen that there is a significant cost saving in
increasing the level from 1 to 2 and from 2 to 3. However, the cost reduction in going
further from 3 to 4 is marginal. However, the time increase in this case is substantial. It

is also noted that Method 2 always performs better than Method 1.

Level-4

I
0
¥

Level-3 Method 1

Normalized time
N
T

b Method 2

-
o O
T

Level-2

-
T

Level-1

0.5 k

0 s s L 1 1 L L : L
0 0.1 02 03 0.4 05 06 0.7 08 0.9 1

Normalized cost

Figure 13: Efficiency frontier

21

Performance for binary case

Fig.14 and Fig.15 show a simple case which illustrates the advantage and limitations of
Method 1. In Fig.14 which is a uniform cost space (10x10 grid) with one obstacle (shaded
area), it can be seen that with increasing levels, the path becomes smoother and the cost
reduces. In fact, Level 3 finds the truly optimal path. However, as illustrated in Fig.9, the
time taken is nearly 3 times as much.

Fig.15 shows a uniform cost space with no obstacles. In this case, it takes up to 5 levels
to find the straight line path. Theoretically, it can take N levels to find the optimal path

of an NxN space. Hence for N=100, the computational time is tremendous.

§ -===t Method I -level 1

——=1= Method !- Level 2
1= Method I-Lgvels 3/4

\
!

Figure 14: Performance of Method 1 for binary case with obstacle

22

evel 1
evel 2

evel 3
evel 4

e e

evel 5

]
.

[N SO E R I S
. -
.
P .'”M
- .

-
2

Figure 15: Performance of Method 1 for uniform cost field

Fig.16a-b illustrate the performance of Method 2 vs Method 1 for the binary case .

)
N\ -1-=- | astar (1 level)] 24.140 ---f- dtar(llgvel) 40142
AN -1 = - | astar (4 1eveny| 23.19 TTrT gar(@lgvel) 8.926
\ N =7 | astar (comners)| 22.67% —1— &tar (comuers) 47.35
\\ \\\
\ Al
S
A
N
L
!
\l
\
:\\
U
‘-\-\ i \\
NN ‘
\.“». . I\\\
3 N .
\5:\ \ A
NRES R \\}* N
G
G R

Figure 16: Performance of Method 1 and Method 2 for binary case

23

6 Conclusions

There are certain situations where the optimality of the path found becomes important.
One such case is the minimization of energy usage for long duration missions.

The algorithm developed produces a truly optimal solution for a binary environment
and a solution of very high accuracy (as compared to common existing techniques) for
the continuously varying space. In order for it to be used in real situations, some of its
limitations need to be addressed. Firstly, the robot is considered to be a point. In the
binary case, usually the obstacles are grown by a fixed amount to justify this assumption.
In the continuously varying case, it is not as straightforward. A method to account for
this assumption needs to be developed. Secondly, the algorithm needs to be extended
to planning in real-time with uncertainty in the environment.Thirdly, for the algorithm to
truly minimize a parameter, like energy, the cost values for each cell have to be realistically
calculated. In this case, there are other factors beside locomotion that consume power.

Such factors have to be incorporated into the cost of the cells.

24

References

[1]

(6]

[7]

8]

[9]

[10]

Barraquand, J. and Latombe, J.C. (1989) “Robot Motion Planning: A Distributed
Representation Approach,” International Journal of Robotics Research, Vol.10, no.6,

628-49.

Brooks, R.A. (1982) “Symbolic Error Analysis and Robot Planning,” International
Journal of Robotics Research,Vol.1, no.4, 29-68.

Chatila, R. (1982) “Path Planning and Environment Learning in a Mobile Robot
System,” Proceedings of the European Conference on Artificial Intelligence, Orsay,

France.

Dufay, B. and Latombe, J.C. (1984) “An Approach to Automatic Robot Programming
Based on Inductive Learning,” International Journal of Robotics Research,Vol.3, no.4,

3-20.

Jarvis, R.A. (1985) “Collision-Free Trajectory Planning Using the Distance Trans-
form,” Mechanical Engineering Transactions of the Institute of Engineers, Australia,

Vol.ME10, no.3.

Khatib, O. (1986) “Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots,” International Journal of Robotics Research, Vol.5, no.1, 90-98.

Latombe, J.C. (1991) “Robot Motion Planning,” Kluwer Academic Publishers,

Boston.

Lozano-Perez, T. (1983) “Spatial Planning: A Configuration Space Approach,” IEEE
Transactions on Computers, Vol.C-32, no.2, 108-120.

Nilsson, N.J. (1980) “Principles of Artificial Intelligence,” Tioga Publishing Company.

Stentz, A. (1994) “Optimal and Efficient Path Planning for Partially-Known En-
vironments,” Proceedings of 1994 IEEE International Conference on Robotics and

Automation, San Deigo.

25

[11] Taylor, R.H. (1976) “Synthesis of Manipulator Control Programs from Task-Level
Specifications,” Ph.D. Dissertation, Department of Computer Science, Stanford Uni-

versity.

[12] Zelinsky, A. (1992) “A Mobile Robot Exploration Algorithm,” IEEE Transactions of
Robotics and Automation, Vol.8, no.6, 707-17.

26

